Functions of Charge Controller - Electrical Engineering Gate

Online Electrical Engineering Study Site

Thursday, January 3, 2019

Functions of Charge Controller

Blocking Reverse Current
Photovoltaic panels work by pumping current through your battery in one direction. At night, the panels may pass a bit of current in the reverse direction, causing a slight discharge from the battery. (Our term "battery" represents either a single battery or bank of batteries.) The potential loss is minor, but it is easy to prevent. Some types of wind and hydro generators also draw reverse current when they stop (most do not except under fault conditions)

 Preventing Overcharge 
When a battery reaches full charge, it can no longer store incoming energy. If energy continues to be applied at the full rate, the battery voltage gets too high. Water separates into hydrogen and oxygen and bubbles out rapidly. (It looks like it's boiling so we sometimes call it that, although it's not actually hot.) There is excessive loss of water, and a chance that the gasses can ignite and cause a small explosion. The battery will also degrade rapidly and may possibly overheat. Excessive voltage can also stress your loads (lights, appliances, etc.) or cause your inverter to shut off

Control Set Points vs Temperature
The ideal set points for charge control vary with a battery's temperature. Some controllers have a feature called "temperature compensation." When the controller senses a low battery temperature, it will raise the set points. Otherwise when the battery is cold, it will reduce the charge too soon. If your batteries are exposed to temperature swings greater than about 30° F (17° C), compensation is essential

Control Set Points vs. Battery Type
The ideal set points for charge controlling depend on the design of the battery. The vast majority of RE systems use deep-cycle lead-acid batteries of either the flooded type or the sealed type. Flooded batteries are filled with liquid. These are the standard, economical deep cycle batteries

Overload Protection 
A circuit is overloaded when the current flowing in it is higher than it can safely handle. This can cause overheating and can even be a fire hazard. Overload can be caused by a fault (short circuit) in the wiring, or by a faulty appliance (like a frozen water pump). Some charge controllers have overload protection built in, usually with a push-button reset

Low Voltage Disconnect (LVD)
The deep-cycle batteries used in renewable energy systems are designed to be discharged by about 80 percent. If they are discharged 100 percent, they are immediately damaged. Imagine a pot of water boiling on your kitchen stove. The moment it runs dry, the pot overheats. If you wait until the steaming stops, it is already too late

No comments:

Post a Comment